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Human motion control
Kinematics

Background:
Kinematics and (kinematic) models

• What you see is what you get, or
• What you model is what you see

– Your model of reality determines what you see
– The model determines the necessary

kinematic input
– The available kinematic input 

determines the model

What you see is how you look at it
• Interpretation of kinematic data is always dependent on the underlying 

(implicit) assumptions
• Choice of measurement method is directly related to the underlying 

(implicit) assumptions about form-function relationships
– Knee as a hinge...
– Knee as a four-bar linkage system with cruciate ligaments

kinematic analysis
2-D versus 3-D

• Pro:
– simple!
– fast!

• Con:
– projection error
– simplification of function

3-D analysis
preferable, but

not always
necessary

Why not use the standard anatomical motion 
description?

• Medical or clinical terminology unsuitable
– Anatomical language

Clinical motion description

• Based on anatomical terminology / language 
• Goal:

– Characterising pathology vs healthy
– Evaluation of intervention

• Use:
– Judgement: Improvement or deterioration
– Information exchange between medical professions
– Clinical Science

• Requirements
– Uniform, unambiguous
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• based on anatomic position
• based on movement in main

(perpendicular) planes
• essentially 2-D!
• “Planar thinking”

Clinical terminology Clinical terminology is not unambiguous, nor 
uniform

Codman’s paradox
Exorotation or endorotation?

‘horizontal abduction’?

Junctura Fibrosa - Junctura Cartilaginea
Fibrous connection - Cartilage connection

(Skull bones) - (Pubic bones)

Hinge joint

Junctura Synovialis

Saddle joint - Pivot joint

Ball-and-socket joint

Joint Degrees-of-Freedom

• # Degrees of Freedom joint depends on:
– Shape of articular surface
– Number of ligaments

• Model Choice !!
– Small translations & rotations are neglected

Ball-and-socket joint
Hinge joint
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Pivot joint Saddle joint

Plane joint
Constraints knee joint

# Degrees-of-Freedom joint depends on:
• shape of articular surface
• number of ligaments

Kinematics 
overview

• Marey (1830 - 1904) • E. Muybridge (1830 - 1904)

Kinematics 
overview
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• Braune & Fischer ~ 1890 - 1900
– two camera-view
– stereo x-ray
– mathematical reconstruction

• extremely laborious

Kinematics 
overview

Kinematics 
overview

• To date:
– (digital) video
– Opto-electronic systems
– electromagnetic systems
– röntgen

Kinematics 
overview

Side step: 
Arthrokinematics and osteokinematics

• Arthro-kinematics
– Description of motion in a joint, often described as the motion of 

articular surfaces with respect to each other:
• Roll
• Slip
• Spin

• Osteo-kinematics
– Segment motions (w.r.t. outside world)
– Joint motions (w.r.t. proximal bone)

Arthro-kinematics

Description of motion of 
articular surfaces with 
respect to each other:
• Roll
• Slip
• Spin

Not well possible in vivo
Mainly from cadaver recordings

Again: what you see is how you look at it

• Interpretation of kinematic data is always dependent on the underlying 
(implicit) assumptions

• Choice of measurement method is directly related to the underlying 
(implicit) assumptions about form-function relationships
– Knee as a hinge...
– Knee as a four-bar linkage system with cruciate ligaments
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If Clinical terminology is inadequate for 3-D 
movement analysis, 

what is?

• Technical motion description
– Pose, position and orientation
– Unambiguous, specific

(But technical motion description is not the language that 
clinicians and movement scientists speak!)

Technical description of motion

• Rotation matrix and translation vector
• 6 Independent parameters:
• 3 rotations, 3 translations, parameterized by

– Euler angles
– Screw axis or helical axis

Kinematic descriptions in 3D

• Description of an object in 
Cartesian space

• Three sets of coordinates can 
describe the pose of an object 
(position + orientation)

The pose of an object relative to a global
coordinate system has six d.o.f.

XZ

Y

x1

x3

x2

Three non-colinear points can define the orientation of an object
These can describe a plane with a unique pose in space

Two points can describe position, but not all three orientations

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

A Rotation matrix can describe the relation
between global and local coordinate systems

xa = x0
a + Rra ⋅ xr =

= x0
a +

cos(x, X) cos(y, X) cos(z, X)
cos(x,Y ) cos(y,Y) cos(z,Y )
cos(x, Z) cos(y,Z ) cos(z, Z)
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⋅ xr

= x0
a + n1 n2 n3[ ]⋅ xr

with

det( Rra ) =1
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Construction of a local coordinate system in 
3D

• Orientation definition of a 
segment requires three 
markers

• These three markers 
describe a plane

• In motion analysis these 
points can be landmarks or 
technical markers

TS

AI

AA
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• From x-y-z global coordinates 
markers markers we can construct 
a local coordinate system
(or: frame) 

• Frame describes its orientation 
and position (= pose) in global 
space

TS

AI

AA

Yg

Xg

Zg

Construction of a local coordinate system in 
3D

• Five steps to define a local 
frame

– step 1: define the first axis
– Step 2: define a support axis to define 

the plane orientation
– Step 3: define a second axis 

perpendicular to the plane
– Step 4: orthogonize your system: 

calculate the axis in the plane 
perpendicular to the first two

– Step 5: construct the orientation matrix

TS

AI

AA z

z u = AA − TS
AA − TS

• Five steps to define a local 
frame

– step 1: define the first axis
– Step 2: define a support axis to define 

the plane orientation
– Step 3: define a second axis 

perpendicular to the plane
– Step 4: orthogonize your system: 

calculate the axis in the plane 
perpendicular to the first two

– Step 5: construct the orientation matrix

TS

AI

AA Z

Ytemp

z u = AA − TS
AA − TS

y temp = AA − AI
AA − AI

• Five steps to define a local 
frame

– step 1: define the first axis
– Step 2: define a support axis to define 

the plane orientation
– Step 3: define a second axis 

perpendicular to the plane
– Step 4: orthogonize your system: 

calculate the axis in the plane 
perpendicular to the first two

– Step 5: construct the orientation matrix

TS

AI

AA

Xs

Zs

Ytemp

z u = AA − TS
AA − TS

y temp = AA − AI
AA − AI

x = y temp × z u, x u = x 
x 

• Five steps to define a local 
frame

– step 1: define the first axis
– Step 2: define a support axis to define 

the plane orientation
– Step 3: define a second axis 

perpendicular to the plane
– Step 4: orthogonize your system: 

calculate the axis in the plane 
perpendicular to the first two

– Step 5: construct the orientation matrix

TS

AI

AA

Ys

Xs

Zs

z u = AA − TS
AA − TS

y temp = AA − AI
AA − AI

x = y temp × z u, x u = x 
x 

y = z u × x u, y u = y 
y 

• Five steps to define a local 
frame

– step 1: define the first axis
– Step 2: define a support axis to define 

the plane orientation
– Step 3: define a second axis 

perpendicular to the plane
– Step 4: orthogonize your system: 

calculate the axis in the plane 
perpendicular to the first two

– Step 5: construct the orientation matrix = 
all three axes / direction vectors

TS

AI

AA

Ys

Xs

Zs

z u = AA − TS
AA − TS

y temp = AA − AI
AA − AI

x = y temp × z u, x u = x 
x 

y = z u × x u, y u = y 
y 

R = x u y u z u[ ]



7

• The resulting 3x3 matrix describes the 
orientation of a segment in the global 
system

• The matrix contains the three direction 
vectors, 

• Each direction vector defines the angle 
of that axis with the three axes of the 
global coordinate system

TS

AI

AA

y

x

z

Rscapula =
cos(x,X) cos(y, X) cos(z,X )
cos(x,Y ) cos(y,Y ) cos(z,Y )

cos(x,Z) cos(y,Z) cos(z,Z)
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P scapula = AAglobal + Rscapula ⋅ x local =
with

det(Rscapula) =1

AAglobal = Origin scapula frame

Y

X

Z

global coordinates ⇔ local coordinates

xscapula
G = AAG + RL →G ⋅ x scapula

L

RL →G =
cos(x,X) cos(y,X) cos(z, X)
cos(x,Y) cos(y,Y ) cos(z,Y )
cos(x,Z) cos(y,Z) cos(z,Z)
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xscapula
L = RG→L ⋅ xscapula

G − AAG( )=

=
cos(X,x) cos(Y, x) cos(Z,x)
cos(X,y) cos(Y, y) cos(Z,y)
cos(X,z) cos(Y,z) cos(Z,z)
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⋅ xscapula

G − AAG( )

TS

AI

AA

y

x

z

Y

X

Z

RG →L = inv(RL →G )

Definition of local coordinate systems in Movement
Studies

• Use of anatomical landmarks for axis
definitions
– Easily defined
– If chosen well: more or less coincident with

axes and centers of rotation
– Mostly easy to define

QuickTime™ en een
TIFF (ongecomprimeerd)-decompressor

zijn vereist om deze afbeelding  weer te geven.

Definition of local coordinate systems in Movement
Studies

• Different use of landmarks
influences unit vectors and 
thus matrix R

• Different order of axis
definition influences unit 
vectors and thus matrix R

QuickTime™ en een
TIFF (ongecomprimeerd)-decompressor

zijn vereist om deze afbeelding  weer te geven.

QuickTime™ en een
TIFF (ongecomprimeerd)-decompressor

zijn vereist om deze afbeelding  weer te geven.Vaughan marker setHelen Hayes marker set

Order preference when defining local 
coordinate systems

• First axis: long axis
• Second axis: perpendicular to 

the plane through three 
landmarks

• Third axis perpendicular to 1 
and 2.
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Bewegingsbeschrijving
LR G = x y z [ ]

Example thigh

z = x × y

z = z
z

y = xyz _ hip − xyz _ knee
xyz _ hip − xyz _ knee

y = y
yY

X

Z

z temp = xyz _ LE − xyz _ ME
xyz _ LE − xyz _ ME

x = y × z temp

x = x
x

Parameterization of orientation matrices
• Order of rotation

– Euler angles
– Segment kinematics versus joint 

kinematics

xG = RG →L ⋅ xL + d =

=
cos(x,X) cos(y, X) cos(z,X )

cos(x,Y) cos(y,Y) cos(z,Y )

cos(x,Z) cos(y,Z) cos(z,Z)
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⋅ xL + d

with

det(R) = 1

xG = RG →L ⋅ xL + d =

=
cos(x,X) cos(y, X) cos(z,X )

cos(x,Y) cos(y,Y) cos(z,Y )

cos(x,Z) cos(y,Z) cos(z,Z)
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⋅ xL + d

with

det(R) = 1

Rotation is not a vector

rot(z’)+rot(y’) ≠ rot(y’)+rot(z’)

(order of rotation can not be interchanged)

cβ 0 sβ
0 1 0
-sβ 0 cβ

Ry = cγ -s γ 0
s γ c γ 0
0 0 1

Rz = Rx = 
1 0 0
0 cα -sα
0 sα cα

Standard matrices for rotation of a vector

• Can be used to rotate a vector to a given position in a 
plane over angle γ (Rz), β (Ry) or α (Rx)

Parameterization of orientation matrices

Agreement within scientific field!!

• Euler angles
– z-x-z: x-convention (applied mechanics)
– z-y-z: y-convention (quantum mechanics, nuclear physics)
– x-y-z: Cardan angles (astonomy, aerospace, biomechanics)

• screw axis or helical axis
• Cayley-Klein parameters
• Euler parameters

BK9-47

Measuring Angles

Relative Angles
(joint rotations) 
The angle between 
the longitudinal 
axis of two 
adjacent segments.

Absolute Angles
(segment rotations) 
The angle between 
a segment and the 
right horizontal of 
the distal end.

R= Rg’*RsegR= Rprox’*Rdist
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What decomposition order is the most 
suitable?

• Many different orders of rotations
– xyz, zxy, yxz, yzx, zxy, zyx
– xyx, xzx, yxy, yzy, zxz, zyz

• Preference of order in standardization:
– As much as possible resembling clinical rotations (flexion/extension, 

abduction/adduction, etc
– Last rotation axial rotation around longitudinal axis of segment
– Then the first two rotations determine the orientation of the segment
– Gimbal Lock orientations should be avoided

Parameters from segmental motions are not
pure joint rotations!

• Euler, or Cardan angles are rotations 
around coordinate systems of 
segments

• Local coordinate axes do (mostly) not 
equal joint kinematic axes
– Elbow, FE-axis is not the line EM-EL

• Improvement possible, by determining 
kinematic joint axes and choosing these as 
local segment axes.

• Even then: rotation is not the same as 
motion in the joint

Joint Motion description:
screw axes

Can be used for estimation of kinematic axis (or center) 
of rotation, which can then be used as the basis for the 
local coordinate systems

Effect of positioning error of landmarks on
knee angles
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Epicondyl-marker 9 mm too much anterior or posterior:  ~ 5° deviation on local
coordinate system

Rotation van 5° around the long axis of the leg induces effects on especially the 
abduction-adduction axis (blue). These are artificial and angle dependent!


