

What you see is how you look at it

- Interpretation of kinematic data is always dependent on the underlying (implicit) assumptions
- Choice of measurement method is directly related to the underlying (implicit) assumptions about form-function relationships
- Knee as a hinge.

Knee as a four-bar linkage system with cruciate ligaments

Why not use the standard anatomical motion description?

- Medical or clinical terminology unsuitable
- Anatomical language

Clinical motion description

- Based on anatomical terminology / language
- Goal:
- Characterising pathology vs healthy
- Evaluation of intervention
- Use:
- Judgement: Improvement or deterioration
- Information exchange between medical professions
- Clinical Science
- Requirements
- Uniform, unambiguous

Clinical terminology

- based on anatomic position
- based on movement in main (perpendicular) planes
- essentially 2-D!
- "Planar thinking"

Junctura Fibrosa - Junctura Cartilaginea
Fibrous connection - Cartilage connection (Skull bones) - (Pubic bones)

Junctura Synovialis
Hinge joint

Saddle joint - Pivot joint

Ball-and-socket joint

Clinical terminology is not unambiguous, nor uniform

Codman's paradox Exorotation or endorotation?

Joint Degrees-of-Freedom

- \# Degrees of Freedom joint depends on:
- Shape of articular surface
- Number of ligaments
- Model Choice !!
- Small translations \& rotations are neglected

Hinge joint

Side step:

Arthrokinematics and osteokinematics

- Arthro-kinematics
- Description of motion in a joint, often described as the motion of articular surfaces with respect to each other:
- Roll
- Spip
- Osteo-kinematics
- Segment motions (w.r.t. outside world)
- Joint motions (w.r.t. proximal bone)

Again: what you see is how you look at it

- Interpretation of kinematic data is always dependent on the underlying (implicit) assumptions
- Choice of measurement method is directly related to the underlying (implicit) assumptions about form-function relationships
- Knee as a hinge...
- Knee as a four-bar linkage system with cruciate ligaments

If Clinical terminology is inadequate for 3-D movement analysis, what is?

- Technical motion description
- Pose, position and orientation
- Unambiguous, specific
(But technical motion description is not the language that clinicians and movement scientists speak!)

Technical description of motion

- Rotation matrix and translation vector
- 6 Independent parameters
- 3 rotations, 3 translations, parameterized by
- Euler angles
- Screw axis or helical axis

The pose of an object relative to a global coordinate system has six d.o.f.

Three non-colinear points can define the orientation of an object
These can describe a plane with a unique pose in space

Two points can describe position, but not all three orientations

Construction of a local coordinate system in 3D

- Orientation definition of a segment requires three markers
- These three markers describe a plane
- In motion analysis these points can be landmarks or technical markers

Construction of a local coordinate system in 3D

- From $x-y-z$ global coordinates markers markers we can construct a local coordinate system (or: frame)
- Frame describes its orientation and position (= pose) in global space

Five steps to define a local frame

- step 1: define the first axis
- Step 2: define a support axis to define - Step 2: define a suppo
the plane orientation
- Step 3: define a second axis perpendicular to the plane
- Step 4: orthogonize your system: calculate the axis in the plane perpendicular to the first two
- Step 5: construct the orientation matrix

$$
\bar{z}_{u}=\frac{A A-T S}{\|A A-T S\|}
$$

$$
\bar{y}_{t e m p}=\frac{A A-A I}{\|A A-A I\|}
$$

$$
\bar{x}=\bar{y}_{\text {temp }} \times \bar{z}_{u}, \quad \bar{x}_{u}=\frac{\bar{x}}{\|\bar{x}\|}
$$

Definition of local coordinate systems in Movement
Studies
:---
definitions
- Easily defined
- If chosen well more or less coincident with
axes and centers of rotation

Definition of local coordinate systems in Movement Studies

- Different use of landmarks influences unit vectors and thus matrix R
- Different order of axis definition influences unit vectors and thus matrix R

Order preference when defining local coordinate system ${ }^{-}$

- First axis: long axis
- Second axis: perpendicular to the plane through three landmarks
- Third axis perpendicular to 1 and 2.

Rotation is not a vector

$\operatorname{rot}\left(z^{\prime}\right)+\operatorname{rot}\left(y^{\prime}\right) \neq \operatorname{rot}\left(y^{\prime}\right)+\operatorname{rot}\left(z^{\prime}\right)$
(order of rotation can not be interchanged)

Parameterization of orientation matrices

Agreement within scientific field!!

- Euler angles
- z-x-z: x-convention (applied mechanics)
- z-y-z: y-convention (quantum mechanics, nuclear physics)
- x-y-z: Cardan angles (astonomy, aerospace, biomechanics)
- screw axis or helical axis
- Cayley-Klein parameters
- Euler parameters

Standard matrices for rotation of a vector
$R z=\left(\begin{array}{lll}\mathrm{c} \gamma & -\mathrm{s} & \gamma 0 \\ \mathrm{~s} \gamma & \mathrm{c} & \gamma \\ 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad \mathrm{Ry}=\left(\begin{array}{lll}\mathrm{c} \beta & 0 & \mathrm{~s} \beta \\ 0 & 1 & 0 \\ -s \beta & 0 & c \beta\end{array}\right) \quad \mathrm{Rx}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & \mathrm{c} \alpha & -s \alpha \\ 0 & \mathrm{~s} \alpha & \mathrm{c} \alpha\end{array}\right)$

- Can be used to rotate a vector to a given position in a plane over angle $\gamma(\mathrm{Rz}), \beta$ (Ry) or α (Rx) plane over angle $\gamma($ Rz $), \beta(R y)$ or $\alpha(R x)$

Parameterization of orientation matrices

What decomposition order is the most suitable?

- Many different orders of rotations
- xyz, zxy, yxz, yzx, zxy, zyx
- xyx, xzx, yxy, yzy, zxz, zyz
- Preference of order in standardization:
- As much as possible resembling clinical rotations (flexion/extension, abduction/adduction, etc
- Last rotation axial rotation around longitudinal axis of segment
- Then the first two rotations determine the orientation of the segment
- Gimbal Lock orientations should be avoided

Parameters from segmental motions are not pure joint rotations!

- Euler, or Cardan angles are rotations around coordinate systems of segments
- Local coordinate axes do (mostly) not equal joint kinematic axes
- Elbow, FE-axis is not the line EM-EL
- Improvement possible, by determining kinematic joint axes and choosing these as local segment axes.
Even then: rotation is not the same as motion in the joint

Effect of positioning error of landmarks on knee angles
Epicondyl-marker 9 mm too much anterior or posterior: $\sim 5^{\circ}$ deviation on local coordinate system

Rotation van 5° around the long axis of the leg induces effects on especially the abduction-adduction axis (blue). These are artificial and angle dependent!

